函数的单调性知识点

2024-10-16 06:39:59

一般地,设一连续函数f(x) 的定义域为D,则

1、如果对于属于定义域D内某个区间上的任意两个自变量的值x1,x2∈D且x1>x2,都有f(x1) >f(x2),即在D上具有单调性且单调增加,那么就说f(x) 在这个区间上是增函数。

2、相反地,如果对于属于定义域D内某个区间上的任意两个自变量的值x1,x2∈D且x1>x2,都有f(x1) <f(x2),即在D上具有单调性且单调减少,那么就说f(x) 在这个区间上是减函数。则增函数和减函数统称单调函数。

函数的单调性知识点

扩展资料:

函数单调性的几何特征:在单调区间上,增函数的图象是上升的,减函数的图象是下降的。

1、当x1 < x2时,都有f(x1)<f(x2) 等价于 ;

2、当x1 < x2时,都有f(x1)>f(x2) 。

两个增函数之和仍为增函数;增函数减去减函数为增函数;两个减函数之和仍为减函数;减函数减去增函数为减函数;函数值在区间内同号时, 增(减)函数的倒数为减(增)函数。

猜你喜欢